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Abstract 

This report details the development of an TV-channel spatial power spectrum estimation 
technique called the SPatial /ncoherent Region Estimator (SPIRE). It was developed in 
support of research aimed at characterizing the spatial spreading of HF signals caused 
by the high latitude propagation environment with the ultimate goal of improving high 
latitude HF radio direction finding performance. Based on the assumption of temporal 
and spatial incoherence, SPIRE uses a surprisingly simple, yet effective, approach 
based on maximum likelihood principles to model the spatial power spectrum. The 
result is an algorithm which provides a more accurate and more informative 
characterization of the spatial nature of incoming signals than currently popular 
conventional and modern superresolution algorithms. This characterization includes 
bearing, spatial extent and power distribution, and total power of the signal. It also 
includes total noise power and modeling accuracy. The performance and utility of the 
SPIRE algorithm is demonstrated using both simulation and off-air data. 

Resume 

Ce rapport decrit l'elaboration d'une technique d'estimation du spectre de puissance 
spatial utilisant N canaux appelee SPIRE (SPatial Incoherent Region Estimator, c.-a-d. 
estimateur de region spatiale incoherente). Cette technique a ete elaboree pour appuyer 
la recherche visant ä caracteriser l'etalement des signaux HF cause par le milieu de 
propagation aux hautes latitudes dans le but premier d'ameliorer les performances de la 
radiogoniometrie HF ä ces latitudes. Ä partir de l'hypothese d'incoherence temporelle 
et spatiale, SPIRE utilise une approche etonnamment simple, mais efficace, basee sur 
les principes du maximum de vraisemblance, pour modeliser le spectre de puissance 
spatial. Le resultat est un algorithme qui permet une caracterisation plus precise et plus 
informative de la nature spatiale des signaux recus que les algorithmes classiques et 
modernes de superresolution qui sont actuellement repandus. Cette caracterisation 
porte sur le relevement, sur la distribution de puissance et l'etendue spatiales, ainsi que 
sur la puissance totale du signal. Elle porte aussi sur la puissance de bruit totale et la 
precision de la modelisation. Les performances et l'utilite de l'algorithme SPIRE sont 
demontrees par simulation et par utilisation de donnees captees en direct. 
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Executive summary 

The requirement exists to improve the accuracy of strategic high latitude HF direction 
finding (DF) systems. In the past, poor DF accuracy derived from Arctic measurements 
has led to low confidence in high latitude sites despite the strategic relevance of these 
sites for transmitter geolocation. 

Disturbances in the ionosphere which scatter the signal over a range of azimuth and 
elevation directions (spatial spreading) are a major problem. This leads to situations 
which are not well modeled by currently popular DF algorithms since the signal is 
assumed to be cleanly reflected from the ionosphere. The result can be bearings with 
large biases and standard deviations. 

Recently a new approach, the Spread Maximum Likelihood (SML) algorithm, was 
developed, incorporating a spatial spreading model. Despite improved performance 
compared to other DF algorithms, performance was still not as good as desired. The 
problem may be that the SML algorithm employs a signal scattering model requiring 
the spatial shape (but not size) and power density profile of the scattering region to be 
constant and known a priori. Not only has the optimum shape not yet been determined, 
there is reason to believe that, given the dynamic nature of the high latitude ionosphere, 
the shape of the scattering region may change significantly over time. 

To understand the true nature of these scattering regions better, the SML algorithm has 
been radically modified to include estimation of the spatial shape and power density of 
the received signal. The result is a new algorithm called the SPatial /ncoherent Region 
Estimator (SPIRE), which effectively maps out the spatial power spectrum of the radio 
sky. Surprisingly, despite the increase in number of signal parameters to be estimated, 
the SPIRE algorithm is much simpler and faster than the SML algorithm. In fact, the 
SPIRE algorithm is comparable in speed to the current generation of superresolution 
algorithms and is much more suited to the problem of spatially spread signals. 

The development and evaluation of the performance of the SPIRE algorithm is 
documented in this report. The performance evaluation was carried out using both 
simulated and off-air data and also included comparisons with other superresolution DF 
algorithms. 

In comparisons using simulated data, the effects of noise, spatial spreading, and the 
shape of the spread region were considered, as well as the ability to detect a weaker 
point-source (no spatial spreading) signal in the presence of a stronger spatially spread 
signal. For the signal conditions tested, the performance of the SPIRE algorithm was 
generally found to be as good as, or better than, the performances of currently popular 
superresolution DF algorithms. 

In comparisons using off-air data collected with the Vortex system (a multi-channel HF 
receiver system located at CFS Alert) in 1995-96, the results were inconclusive. 
However, the usefulness of the SPIRE algorithm to detect problems, particularly the 
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ability to measure modeling error, made it possible to show that antenna mutual 
coupling problems had almost certainly corrupted the measurements. Ideally, mutual 
coupling effects could be corrected by doing advanced processing to calibrate the data; 
however, more research work needs to be done in this area. 

W.J.L.Read. 2000. A Spatial Power Spectrum Estimator For Distributed Signals. DREO TR 
2000-099. Defence Research Establishment Ottawa. 
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Sommaire 

II est necessaire d'ameliorer la precision des systemes strategiques de radiogoniometrie 
HF aux hautes latitudes. Par le passe, la faible precision obtenue en radiogoniometrie 
avec les mesures faites dans l'Arctique a mene ä un bas niveau de confiance dans les 
sites des hautes latitudes, malgre la pertinence strategique de ces sites pour etablir la 
position geographique des emetteurs. 

Un probleme majeur est lie aux perturbations ionospheriques qui diffusent le signal sur 
une gamme de directions en azimut et en site (etalement spatial). II en resulte des 
situations qui ne sont pas bien modelisees par les algorithmes de radiogoniometrie 
actuellement repandus, etant donne que le signal est considere par hypothese comme 
etant nettement reflechi par 1'ionosphere. Les relevements obtenus peuvent alors 
comporter des biais et des ecarts-types importants. 

Recemment, un nouvel outil, l'algorithme ä vraisemblance maximale etalee (SML), 
comprenant un modele d'etalement spatial, a ete elabore. Bien que cet algorithme soit 
plus efficace que les autres algorithmes de radiogoniometrie, l'efficacite desiree n'etait 
pas encore atteinte. Le probleme peut etre du au fait que l'algorithme SML utilise un 
modele de diffusion du signal dans lequel la forme spatiale (mais pas la taille) et le 
profil de densite de puissance de la region de diffusion doivent etre constants et connus 
a priori. Non seulement la forme optimale n'a pas encore ete determinee, mais on est 
Justine de croire qu'en raison de la nature dynamique de l'ionosphere aux hautes 
latitudes, la forme de la region de diffusion peut changer beaucoup avec le temps. 

Pour mieux comprendre la nature reelle de ces regions de diffusion, on a modine 
radicalement l'algorithme SML de facon ä y inclure une estimation de la forme spatiale 
et de la densite de puissance du signal recu, ce qui a donne un nouvel algorithme appele 
SPIRE (SPatial Incoherent Region Estimator, c.-ä-d. estimateur de region spatiale 
incoherente), qui represente efficacement le spectre de puissance spatial de la 
propagation radio ionospherique. Etonnamment, en depit de l'accroissement du nombre 
de parametres de signaux ä evaluer, l'algorithme resultant est beaucoup plus simple et 
plus rapide que l'algorithme SML, avec une vitesse comparable ä celle des algorithmes 
de superresolution de la generation actuelle, mais beaucoup mieux adapte au probleme 
des signaux ä etalement spatial. 

Lelaboration de l'algorithme SPIRE est documented dans ce rapport et ses 
performances sont evaluees ä l'aide de donnees simulees. Cette evaluation tient compte 
des effets du bruit, du degre d'etalement spatial et de la forme de la region d'etalement. 
Elle permet aussi de detecter un signal de source ponctuelle (pas d'etalement spatial) 
faible en presence de signaux ä etalement spatial plus forts. 

Dans les comparaisons effectuees ä l'aide de donnees simulees, les performances de 
l'algorithme SPIRE se sont generalement revelees egales ou superieures ä celles des 
algorithmes de radiogoniometrie actuellement repandus, pour les diverses conditions de 
signaux ayant fait l'objet d'essais. 
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Dans les comparaisons effectuees ä l'aide de donnees en direct recueillies avec le 
Systeme de reception HF multivoie Vortex ä la SFC Alert en 1995-1996, les resultats 
n'etaient pas concluants. Cependant, l'utilite de ralgorithme SPIRE pour detecter les 
problemes, en particulier la capacite de mesurer 1'erreur de modelisation, a permis de 
montrer que les problemes de couplage mutuel d'antenne avaient presque certainement 
corrompu les mesures. Idealement, les effets du couplage mutuel pourraient etre 
corriges par un traitement evolue servant ä etalonner les donnees, mais d'autres travaux 
de recherche sont necessaires dans ce domaine. 

WJ.L.Read. 2000. Une technique d'estimation du spectre de puissance spatial pour les 
signaux distribues. DREO TR 2000-099. Centre de recherches pour la defense, Ottawa. 
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1.    INTRODUCTION 

The requirement exists to improve the accuracy of strategic HF direction finding 
systems, particularly in the Arctic. In the past, poor direction finding (DF) accuracy 
derived from Arctic measurements has led to low confidence in high latitude sites 
despite the strategic relevance of these sites for transmitter geolocation. 

Patches of enhanced electron density and associated instabilities in the F layer of the 
ionosphere, which drift across the polar cap during darkness in a roughly antisunward 
direction at speeds ranging from a few hundreds to over one thousand meters per 
second [1], are a major problem. These patches can cause scattering of a signal from 
azimuth directions which are very different from the true bearing of the transmitter. 

One avenue of investigation being pursued is the development of new DF algorithms 
which are better matched to the high latitude HF signal environment. Currently popular 
DF algorithms assume that the incoming signal can be modeled as a point source, or 
equivalently, that the incoming radio signal has a planar wavefront. This is reasonable 
if the size of the transmission source is extremely small relative to its range, the size of 
the DF array is also small relative to the transmitter range, the ionosphere acts as a 
perfect or near-perfect reflector, and local site multipath can be ignored. Unfortunately, 
at high latitudes, during periods when scattering from large moving patches occurs, the 
received signal arrives from a range of bearings in both azimuth and elevation. In this 
report, signals of this type are called spread-source signals. Typical modern DF 
algorithms estimate a spread-source signal as being a cluster of several point-source 
signals coming from the same direction. 

Although representation of a spread-source signal as a cluster of several point-source 
signals is useful, the information provided is degraded. For example, it becomes more 
difficult to: determine the spatial extent of the signal; determine if two or more similar 
bearing estimates represent different reflection paths or a single scattering region of the 
ionosphere; and, detect and estimate the direction of weaker signals. Solving this latter 
difficulty is important since a previous study [2] has shown that sporadic-E propagation, 
when it exists and can be measured, leads to good bearing estimates. Hence, it is 
important that a DF algorithm be able to detect and determine the bearing of a weaker 
sporadic-E reflected signal in the presence of one or more stronger F-region signals. 

Recently a new approach, the Spread Maximum Likelihood (SML) algorithm [3], was 
developed, incorporating a spatial spreading model to handle scattering effects due to 
the ionosphere. Despite improved performance compared to other DF algorithms [1], 
[3], [4], performance was still not as good as desired. The problem may be that this new 
algorithm employs a signal scattering model requiring the shape (but not size) and 
power density profile of the scattering region to be constant and known a priori. Not 
only has the optimum shape not yet been determined, there is reason to believe that, 
given the dynamic nature of the high latitude ionosphere, the shape of the scattering 
region may change significantly over time. 
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To understand the true nature of these scattering regions better, the SML algorithm has 
been radically modified to include estimation of the spatial shape and power density of 
the received signal. The result is a new algorithm called the SPatial /ncoherent Region 
Estimator (SPIRE), which effectively maps out the spatial power spectrum of the radio 
sky. Surprisingly, despite the increase in number of signal parameters to be estimated, 
the SPIRE algorithm is much simpler and faster than the SML algorithm. In fact, the 
SPIRE algorithm is comparable in speed to the current generation of superresolution 
algorithms and is much more suited to the problem of spatially spread signals, as will 
be shown through simulation. 

An unexpected bonus of the SPIRE algorithm approach is a function which effectively 
measures the modeling error. This error function provides a useful way to determine 
proper sampling size, and whether local multipath/coupling effects may be degrading 
the results. This is demonstrated using high latitude HF data collected with the Vortex 
system (an experimental 12 channel HF collection system) in 1995-96 at CFS Alert. 

The layout of the rest of the report is as follows. In Section 2, the underlying maximum 
likelihood approach is discussed and the appropriate cost and model error functions are 
introduced. This is followed by the development of a signal model which reduces the 
estimation problem to calculation of the signal and noise power parameters only. In 
Section 3, the basic algorithmic procedure for signal and noise power parameter 
estimation is developed. In Section 4, problems with spatial ambiguities are dealt with 
through the adoption of a "simpler is better" guideline. An implementation scheme is 
also introduced which leads to significantly faster processing. Additionally issues, such 
as sample size and maximum number of signals, are also addressed. In Section 5, 
simulated data is used to compare the performance of the SPIRE algorithm with other 
popular DF algorithms. In Section 6, performance is again compared using off-air data. 
This data is also processed to show the usefulness of measuring modeling error for 
sample size determination and mutual coupling/local site multipath detection. Finally, 
in Section 7, the conclusions and recommendations are presented. 
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2.    DEVELOPMENT OF THE SPIRE ALGORITHM 

2.1    Maximum Likelihood Estimation 

A successful, albeit often computationally intensive, approach to estimation is based on 
the maximum likelihood method. Essentially the idea is to find the most likely state of a 
signal process given a set of measurement observations made of the process. Since this 
is a statistical approach, the method applies to cases where the signal generation is a 
random process and/or the measurements have been corrupted by additive noise (which 
is a random process). 

Assuming the random processes are all normally Gaussian distributed, and 
measurements are made using N sensors, the associated probability density function is 
given by [5] 

(1) /(X0,XI,...,XK_I) = 
[7T^detC]K 

3-trace((X-M)H c~x (x-M)) 

where the superscript H denotes the conjugate-transpose operation, and the vectors 
x0,..., x-K-i represent the random complex measurement data associated with all N 
sensors for time instances t = to,h,...,tK-i as defined by 

(2) Xfc 

x0(k) 

x2{k) for 0 < k < K. 

XN-l(k) 

Additionally, the matrix X represents all K measurement vectors as given by 

(3) X = [xo,xi,...,Xtf_i], 

the matrix M represents the corresponding mean values of the measurements, and C is 
the N x N covariance matrix describing the correlations among sensors. The exact 
definitions of the matrices M and C depend on how the above density function is 
applied to the particular estimation problem to be solved, as will be seen. Once these 
definitions have been set up, the maximum likelihood solution is found by maximizing 
the probability density function with the most appropriate valid choices of M and/or C. 
These maximizing choices for M and/or C can then be related back to the signal 
parameters of interest. 

For direction finding purposes, xx,..., x#-i are taken to represent the complex 
baseband outputs from an array of N antennas. The definitions for M and C depend on 
the assumptions made about the signals. Given that man-made HF signals are bounded 
(finite power) and any constant modulus properties will be destroyed by the dynamic 
nature of the ionosphere (e.g. fading and Doppler spreading), it is reasonable to model 
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these signals as being zero-mean stochastic processes. Hence this leads to the 
assumptions that 
(4) M = 0 

where 0 is a matrix of all zeros, and 

(5) Cmn = E[xm(k)xn{k)*}      for   0 < k < K and 0 < m,n < N 

Cmn is the element of C located in the mth row and the nth column. 

2.2   The Cost and Model Error Functions 

The probability density function (1) can be simplified using (4) to give 

ff.\ t(„   v       v      \ * ö-trace(xHc-1x) 
(6) /(xo,Xi,...,XK-l)=  ^NdetC}K 6 

The objective is to find the unknown covariance matrix C which maximizes this 
expression. This is equivalent to maximizing the cost function 
Lc = ln/(x0,xi,...,XK_i) or, 

(7) Lc = -NK ln(7r) - K ln(det C) - trace(XHC-1X). 

Since the addition or multiplication by a constant value has no effect on the 
maximization, the cost function can be simplified to 

(8) L = - ln(det C) - trace(RC_1) 

where R is the data covariance matrix constructed from X using 

(9) R = -^XXH. 

Although not required for the theoretical development of the SPIRE algorithm, the cost 
function can modified to provide a measure of the modeling error which, in turn, 
provides information about the quality of the estimates. A simple model error function 
can be defined as 
(10) e = Lmax - L 

where Lmax is the cost function value when the model covariance matrix exactly 
matches the data covariance matrix, or C = R. Expanding the expression for e in terms 
of (8) and simplifying, then 

(11) £ = ln(det C) + trace(RC_1) - ln(detR) - N 

The usefulness of e is shown later on in Sections 4, 5 and 6. 
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2.3   Modeling the Signal Environment 

The modeling aspect comes into play when C is being selected. A model is used to 
generate C based on input modeling parameters such as, for example, the number of 
signals, signal bearings, signal amplitudes/powers, and noise powers. For this reason, 
C is referred to as the model covariance matrix in this report. 

The procedure for determining the optimum choice for C (i.e. the choice which 
maximizes the cost function L) starts by choosing initial model parameters, generating 
the corresponding model covariance C, and then determining the cost function value L. 
The model parameters are then successively refined and C recomputed until the 
maximum cost function value has been achieved. The model parameter values 
corresponding to this maximum value are then taken to be the optimum or maximum 
likelihood estimates. 

The particular model used to generate the model covariance matrix depends on many 
factors including the transmitter(s) and receiver characteristics, the signal propagation 
environment, the noise sources, and so on. One way to set this model up, is to consider 
the generation of synthetic data which imitates the collected data, and then use this 
synthetic data to determine C according to 

(12) C = -^YY" 

where Y is the matrix of model data and has the same form and dimensions as X. 

Based on these simplifying assumptions, the received signal can be decomposed as 

(13) Y = Y!+Y2 + ...+YM + N 

where the matrices Yi, Y2,..., YM represent the model data for the M individual 
signals, and N is the modeled noise. The matrix Ym, for 0 < m < M, can be defined 
in vector form as 
(14) Im = emam 

where em is the steering vector (or array response vector) for the mth signal, and aTO is 
the corresponding signal amplitude vector. The definitions for the elements of the 
steering vector are given by 

(15) 6m — 

ei x (l0 sin ^m cos ^m+yo cos ^m cos ^m) 
j ^ (xi Sin 4>m COS 1pm +2/1 COS 4>m COS 1pm ) 

eJ^-(xN-ism4>mcostl}m+yN-icos(j>m cosipm) 

where A is the signal wavelength, xn and yn are the Cartesian coordinates for antenna n 
(with the phase center of the array located at the origin), 4>m is the azimuth angle of the 
mth signal measured clockwise with respect to the Y-axis of the coordinate system, and 
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tpm is the elevation angle measured with respect to the X-Y plane (the ground). The 
definition for the elements of the signal amplitude vector is given by 

(16) am = 

<(0) 
C(i) 

a.*m(K-l) 

The coefficients am(0), am(l),..., am(K — 1) are the received complex amplitudes of 
the mth signal for time instances to, ii,..., tx-i- 

The model covariance can also be written as a sum of the noise covariances, the signal 
covariances, and the signal cross-covariances, or 

M M-l       M 

(17) C = (T2C„ + £ Cmm + ]£      Y,     i^rnn + QD 
m=l m=l   n=m+l 

where a2 is the noise power, C^ is the normalized noise covariance matrix 
(trace C,, = 1), Cmm is the signal covariance matrix for the mth signal, and Qmn is 
the signal cross-covariance matrix. The generation of these matrices is discussed in the 
following paragraphs. 

The noise covariance matrix C^ is assumed to be known a priori and will not be 
considered as part of the estimation process. The determination of C,, can be done 
either through theoretical statistical considerations, or through measurements. For 
example, if the noise is known to be white Gaussian in nature with equal but 
uncorrelated amplitudes in each channel, then E[r]m(k)r]^n(k)] = a2 and 
^[Vm{k)r]^(k)] = 0 for 0 < m, n < N and m ^ n, hence 

(18) C„ = ^IN 

where IJV is the N x N identity matrix. Alternatively, if data measurements can be 
taken when no signals are present, then 

(19) C„ =      XX    „ . v     trace(XX") 

More elaborate procedures could be developed involving a number of measurement sets 
with the same noise environment but different signal directions, however the 
development of this kind of approach is beyond the scope of this report. It suffices to 
say that joint estimation of both the noise and signal characteristics should be avoided if 
possible since it leads to poorer accuracy. 

The signal covariance matrix Cmm can be defined in terms of the model data as 

\^J) ^-'mm —   TS     m     m 
1 
K 
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which can be further expanded in terms of the component amplitude and steering 
vectors as 

ni\ r      - &m&mc   PH 

In a similar fashion, the cross-covariance matrix Qmn can also be defined and 
expanded to get 

O      - —Y  YH 

(22) =  -J%rLeme^       for n>m. 

For the high latitude HF skywave environment, the assumption is made that the 
cross-covariance terms disappear. This is based on considering the various cases. 
Signals from different transmitters will be uncorrelated. Signals originating from the 
same transmitter but reflected off different layers of the ionosphere will also be 
uncorrelated due to the large path length differences usually encountered (i.e., the path 
delay time differences will be greater than the inverse bandwidth of the signal). Signals 
originating from the same transmitter but scattered from different parts of the same 
region (or patch) of the ionosphere will also be uncorrelated since the scattering 
elements within the region are short-lived [11]. Given Doppler spread measurements 
for patch scattered signals of up to 40 Hz [10]), it is further assumed that this is caused 
by the birth/death rate of the scatterers giving a decorrelation time of T > l/40s. More 
generally, if the Doppler spread is caused by turbulent motion of the electron gas 
plasma of the ionosphere, from the perspective of the receiver, the results come to the 
same thing (i.e. T > l/40s). 

A violation of the assumption of uncorrelated signals is the case of local site multipath. 
However, like the problem of determining the noise correlations, including the signal 
correlations in the estimation process is highly undesirable (although in the standard 
stochastic ML approach this is done [8]). Hence it is assumed that either the receiver 
site is well chosen, or signal correlations can be determined independently and 
corrected as done, for example, in [9]. 

The end result is that (17) can be simplified to become 

M 

(23) C = a2Cr,+ Y^ Cmm 
m=l 

The great advantage of this form is that the signal part of the model covariance matrix 
can be generated as the sum of the individual signal covariance matrices. More 
importantly, by dividing the regions of interest into sufficiently small subregions, each 
subregion can be represented by a single scattering element or point source leading to 

M 

(24) C = a2Cv + ^2 s™ e™e™ 
m=l 
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where em represents the steering vector associated with the bearing of the mth 

subregion and sm is the corresponding signal power. 

The optimum solution for a2 and sm for m = 1,..., M is found by choosing the values 
which maximize the cost function L. If the region to be subdivided is the entire 
field-of-view of the antenna array, then the result will be a maximum likelihood 
estimate of the spatial power spectrum where no assumptions have been made about the 
shape and power distribution of the scattering region(s), nor any assumption about the 
number of signals (a value required by most superresolution methods). 

On the face of it, given M will be very large (e.g. for a 1° uniform spacing over both 
0 - 360° in azimuth and 0 - 90° in elevation then M = 32400!), there would appear to 
be two fatal objections to the proposed approach. The first objection is that the model 
seems to be over-determined (too many model parameters) so that many different and 
incorrect solutions will exist. The second objection is that estimation of so many 
parameters will make the method computationally slow. However, the fact that the 
model parameters are constrained so that a2,sm > 0, plus the reduction in the number 
of kinds of parameters (i.e. power only versus the power, bearing, and bearing spread 
parameters of the SML algorithm) has a major impact on overcoming these objections 
as will be seen in later sections. 
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3.    MODEL PARAMETER ESTIMATION 

As indicated previously, optimization of the power parameters o2 and si,..., SM 

proceeds in a way which maximizes the cost function L. The basic algorithm begins by 
initializing the noise and signal power parameters, and then iteratively updates these 
parameters using a gradient technique until a sufficiently accurate result is achieved. 
The basic algorithm is listed below. Additional details for some of the steps listed can 
be found in the indicated sections. 

1. Initialize model noise power by performing an eigendecomposition on the 
whitened data covariance matrix to get 

_i       _i       " 
(25) CVRCV =J>iVivf 

i=l 

and then overestimating the initial value of a2 using 

(26) a1 = 2AJV 

(Section 3.1). 

2. Initialize the model signal powers by setting 

(27) si = s2 = ■ ■ ■ = sM = -^(traceR - a2) 

(Section 3.2). 

3. Initialize the loop counter: loop = 0 

4. Increment the loop counter: loop —> loop + 1 

5. Update signal power parameter estimates (Section 3.3). 

6. While loop < maxJtoop go to step 4. 

7. (Optional) Update noise power parameter (Section 3.4). 

8. Output model parameter estimates. 

A value of maxJtoop = 20 has been found to give good results. Enhancements to 
accelerate the processing speed and appropriate choices for the various algorithm 
control parameters are discussed in Section 4. 
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3.1    Initial Noise Power Estimate 

The initial estimate of the noise power a2 is based on the idea that, in the presence of 
spatially white Gaussian noise, the data covariance matrix can be divided into signal 
and noise subspaces. In the derivations thus far, the noise has not been assumed to be 
white, but it has been assumed to be known. Hence the first step is to whiten the noise 
by performing the following modification to the data covariance matrix. 

(28) R„ = WHRW 

where 
(29) WWF = C-1 

There are many equally valid solutions for W which satisfy (29) but for simplicity of 
notation the choice 

(30) W = CV 

has been used. The actual choice is a matter of convenience. Additionally, in the special 
case where the noise is already white and Gaussian, then 

(31) Rw = ATR 

Using eigendecomposition, the whitened data covariance matrix can be represented by 

N 

(32) HW = Y^ AiVjvf 
i=i 

where Ai,..., A/\r are the eigenvalues ordered so that Ai > • • ■ > XN, and vi, ...vyv are 
the corresponding orthonormal eigenvectors. In the ideal case, Rw is formed from an 
infinite number of sensor snapshots, there are M < N point-source signals impinging 
on the array, and the measurements are corrupted by additive white Gaussian. Under 
these conditions, the first M eigenvectors will be associated with signal + noise, while 
the rest (N — M eigenvectors) will be associated with noise only. The corresponding 
values of the N — M smallest eigenvalues will all equal a2. Under these ideal 
conditions, estimating a2 from any of the smallest N — M eigenvalues is a trivial 
exercise. 

In the high latitude HF case, the number of measurements will not be infinite, and the 
signals will not be point-source (due to azimuth/elevation spreading). For a limited 
number of point-source signals, the problem of finite samples could be solved by 
averaging the smallest N — M eigenvalues to produce an estimate of the noise power. 
The problem of spatial spreading cannot be solved so easily, however, since spreading 
causes the effective value of M (remembering that M is the number of point-source 
signals) to increase so that it may exceed N. Figure 1 illustrates this point through 
simulation. Figure la shows the spatial power spectrum consisting of a point-source 
signal, a spread-source signal, and a noise floor set to yield a signal-to-noise ratio 
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(SNR) of 20 dB. Figure lb shows the corresponding eigenvalues for three cases: signal 
only; noise only; and signal plus noise. The antenna array configuration used for the 
simulation is shown in Figure 2 and discussed in Section 4.1. The results demonstrate 
that, in this case, the signal power affects all the eigenvalues implying M > N even 
thought there were only two signals. 

The simplest solution to the spreading problem is to assume that at least one of the 
dimensions of R^, is dominated by noise. The noise power can then be estimated as, 

(33) a2 = AJV 

For the example in Figure 1, choosing the smallest eigenvalue for the noise power 
estimate gives the best result even though it is slightly overestimated. 

In cases where the signal power dominates all dimensions of R„, (e.g., in the previous 
example this would be true for an SNR = 30 dB), then A^ will be a large overestimate 
of a2. In practice, this overestimate has not been found to significantly affect the 
accuracy of the signal estimates (which are of most interest), so no attempt has been 
made to investigate this problem further. 

In fact, it has been found that purposely overestimating the noise power by a factor of 
two, and then fixing this value until after the final iteration of the SPIRE algorithm, 
leads to more accurate estimates of the noise power and better detection of weaker 
signals. If the noise power is updated within the loop, the signal model sometimes 
adapts to the noise (due to the signal model's greater flexibility) forcing the estimated 
noise power to zero and causing false signal estimates. Under these circumstances 
convergence occurs on an undesirable false maximum of the cost function. Hence it is 
better to wait until the signal model estimate has stabilized before fine tuning the noise 
power. 

3.2    Initial Signal Power Estimate 

The initial signal powers are set equal according to 

(34) si = s2 = ■■■ = sM = s 

Since the total power observed in the data is assumed to be produced by uncorrelated 
processes, then ideally 

(35) traceR = a2 + ^ 
M 

m=l 

Hence, given the signal powers are all equal, the quantity s is given by 

(36) s=— (traceR -a2) 

where the value for a2 used here is the initial value computed according to (33). 
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Figure 1: Simulation of a spread-source signal environment showing (a) the spatial power spectrum, and (b) the 

corresponding eigenvalues when an array with 12 antennas is used. 
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For a limited sample of sensor data, (36) will only be approximately true and a more 
accurate value of s could be obtained by maximizing the cost function L. However, for 
the sake of initialization, and in the interests of reducing the number of computations, 
(36) is sufficient. 

3.3   Signal Power Estimates 

The optimum solution for the signal power sm can be found by setting the gradient of L 
to zero where the gradient is measured with respect to sm. The generic gradient of the 
cost function L (derived in [3]) is given by 

(37) G(a) = trace f (C^R - W1^) 

In the case where a = sm, setting the gradient G{sm) to zero leads to the following 
expression (based on the derivation in [3] with some slight rearranging), 

(38) Sm~ (e£C-iem)2        ■ 

where Asm is the estimated signal update. Hence for a particular signal source m, 
sm + Asm is the updated signal power which maximizes L. 

For computational efficiency, the signal power updates for m = 1,..., M are done in 
parallel so that the matrices C-1 and (C_1R - I)C_1 need only be calculated once, 
and not M times for each individual signal power update. However, this results in an 
overestimation of the signal updates so a compensating scaling factor is required. 
Calling the scaling factor fj,, the update is applied as: sm -> sm + /j.Asm. 

To ensure the fastest convergence using this approach, the value of n which maximizes 
L is calculated for each iteration. As no direct solution has been found, the bisection 
method has been chosen as providing a reasonably fast search procedure to determine 
the desired solution. Using the generic search parameter a, this method is shown below. 

1. Set the upper and lower search bounds, aiow and ahigh- 

2. Estimate the search parameter as: a = \{aiow + ahigh) 

3. Compute the gradient G(a). 

4. If G(a) > 0 then alow = a, otherwise ahigh = a. 

5. Repeat steps 2-5 nine more times. 

Steps 2-5 can be repeated more times for greater accuracy, however in practice, the 
number of times indicated has been found to be sufficient for the use of the SPIRE 
algorithm. 
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The appropriate model for the updated covariance matrix is 

M M 

(39) C = <r2C + Y^ sm eme^ + // ^ Asmeme£ 
m=l m=l 

Note that the matrix formed from the first two terms on the right hand side of this 
expression represents the model covariance before updating and only needs to be 
calculated once, not in every iteration of the bisection method. Using this model and 
solving (37) with respect to /i, the corresponding gradient function is given by 

M 

(40) G(/i) = ]T Asme^(C-1R - I)C-1em 

i=m 

Finally, the search limits for \i are given by: mow = 0 and ßhigh = 1- 

In the event that sm + fj.Asm < 0, sm is assigned a value of zero since the signal 
powers can never be negative. Additionally, in the event that Sk = 0 and As* < 0, the 
calculation involving m = k in (39) can be ignored reducing the overall number of 
computations. 

There are two problems with the bisection method as described here: the function G(/x) 
is not guaranteed to be monotonically decreasing in the region of interest; and the 
method does not take into account the constraint sm + /J.Asm > 0. In practice, 
provided that calculations associated with obviously negative powers are eliminated 
(i.e. Sk = 0 and As^ < 0), the bisection method returns an answer for ß which, 
although not always optimum, is sufficiently good for practical purposes. 

3.4    Noise Power Update 

The noise power update a2 can also be calculated using the bisection method outlined 
in Section 3.2. The model covariance defined in (24) is suitable for these purposes. 
This definition is repeated here as 

M 

(41) C = <72C„ + sm J^ef 
i=i 

Using this model and solving (37) with respect to a2, the gradient function is given by 

(42) G{a2) = trace ((CT1!*, - ^CT1^) 

The lower search limit for a2 is afow = 0. The upper search limit is given by 

(43) a2
high = trace R 

where trace R is an estimate of the signal plus noise power (and hence an overestimate 
for the noise power). 

As discussed earlier in Section 3.1, the noise power update is only applied after the 
signal model estimates have been refined and only if a more accurate estimate of the 
noise power is desired. 
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4.     IMPLEMENTATION ISSUES 

To investigate some of the practical issues associated with the implementation of the 
SPIRE algorithm, a series of simulations were carried out. The details of the 
simulations are discussed in the next section (Section 4.1). The implementation issues 
addressed, including spatial ambiguities, signal model grid spacing, data sample size, 
and limitation on the number of signals, are discussed in Sections 4.2-4.5. 

4.1    Simulations Settings 

For these simulations, the antenna array shown in Figure 2 was chosen, as this array 
geometry was investigated in [16], [4] and was found to have very good characteristics 
for direction finding. Assuming an ideal free space response, then for any given signal 
bearing, the azimuth beamwidth of the array is relatively constant with respect to the 
azimuth bearing but varies with the elevation bearing according to 

(44) (f>BW = 7.8°/| cos VI     for 1^1 < 90° 

where the beamwidth is defined as the angular width of the main lobe of the antenna 
array gain pattern measured at the 3 dB points (i.e. the points at 0.707x the maximum 
gain). Note that measuring the azimuth beamwidth at or near ip = 90° is effectively 
meaningless. 

The elevation beamwidth is given by 

(45) VßW = 7.8°/|sinV|      for \j>\ > 30°. 

For elevation bearings below 30°, the beamwidth is somewhat more complicated as 
shown in Figure 3. The failure of the above expression at the lower elevation angles is 
due to the distortion of the main lobe in the antenna pattern at the elevation angle tp by 
the reflection of this lobe at the elevation angle —ip. For example, a 2-dimensional x-y 
array, using the free space assumptions, has a symmetrical gain pattern for elevation 
angles above and below the horizon, i.e., a main lobe and a reflection lobe. At low 
signal elevations, the main and reflection lobes begin to join. They are considered 
merged when the minimum gain between the two lobes is greater than 0.707x the 
maximum gain. Using the array configuration shown, this occurs at 21.2°. At this 
point, the beamwidth effectively doubles. For even lower signal elevations the merged 
lobes move closer together so the beamwidth actually decreases. 

The simulation signal model was set up using two signals with the spatial power 
spectrum shown in Figure 4. The spread-source at (<j>, if)) = (10°, 30°) had a total 
power three times that of the point-source. The noise power level (represented by the 
floor at 0 dB in Figure 4) was set to be 20 dB less than the point-source signal power. 

The basic steps of the SPIRE algorithm were outlined in the previous section. 
Following these steps, the result of processing simulated data using a subregion size of 
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Figure 2: Three dimensional view of the antenna array. Each grid square has a dimension oflXxlX. 
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Figure 3: Antenna array elevation beamwidth as a function of elevation comparing the simulated response (solid 

line) with the sin-1 ip predicted response (dashed line). 
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Figure 4: Spatial power spectrum of signal model used for simulations. 

1° x 1° (i.e. the model covariance matrix was constructed from point source signals 
placed every degree in azimuth and every degree in elevation) and a sample size of 
K = 10000 is shown plotted in Figure 5a. Despite the large amount of data used to 
generate the results, the shape of the SPIRE estimate power spectrum is less than ideal. 
Improvements to the shape are discussed in Section 4.2. 

For comparison purposes, the Minimum Variance (MV) [12] and MUSIC [14] 
algorithms were also used to process the results and the results are plotted in Figure 5b 
and c. A search grid employing the same 1° x 1° spacing as used for the SPIRE 
algorithm, was also used by both the MV and MUSIC algorithms. Since MUSIC was 
originally developed for direction-of-arrival estimation, and not spectrum estimation, 
the square root of the MUSIC output has been displayed here and all other MUSIC plots 
in this report since this results in a better estimate of the relative spectral power levels. 

The processing time for the example shown in Figure 5 was 38 seconds for basic 
SPIRE and 1.6 seconds each for MV and MUSIC. A faster method of producing the 
SPIRE results is discussed in the section 4.3. 

4.2   Spatial Ambiguities 

Given the large amount of data used to generate the data covariance matrix 
(K = 10000), a better correspondence might have been expected between the actual 
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Figure 5: Results of processing K = 10000 samples of simulated data using: (a) basic SPIRE, (b) MV, and (c) 

MUSIC. 
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signal model shown in Figure 4 and the SPIRE estimated model shown in Figure 5a. 
However, the results illustrate an apparent ambiguity problem with the spatial power 
spectrum. For example, nearly identical results to those shown in Figure 5 can be 
produced with the signal model having the spatial power spectrum shown in Figure 6. 
In other words, the two signal models produce almost identical data covariance 
matrices although the spread-source signal regions have different spatial shapes. 

*6b„        30 

Figure 6: Spatial power spectrum of alternate signal model which leads to virtually the same results as in Figure 5 

when the model generated data is processed with basic SPIRE, MV, or MUSIC. 

This result is not totally unexpected since as smaller and smaller features are 
considered, the angular resolution limitations of the antenna array will become a 
problem. Hence, an arbitrarily shaped region will be indistinguishable from a point 
source, or any other arbitrarily shaped region for that matter, as long as the regions are 
very small and at the same angular position. Applying this idea to the features in 
Figures 4 and 6, "small" means less than the antenna array beamwidth. 

Given this resolution problem, it makes more sense to estimate regions using the 
simplest shape that yields an acceptable solution rather than more complex shapes. 
Using this as a guideline, and investigating a number of different modifications to the 
basic SPIRE algorithm, the following modified algorithm was developed. 

1. Perform basic SPIRE as outlined in Section 3 except using maxJoop = 10. 

2. Subdivide the signal grid into P regions. 
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3. Do the following steps 4-12 twice. 

4. Initialize the region counter: p = 0. 

5. Increment the region counter: p —> p + 1. 

6. Select only grid signals from region p for further processing. 

7. Reduce all signal powers in region p by a factor of 2. 

8. Do steps 9-11 maxJtoop times. 

9. Include grid signals bordering region p. 

10. Update region m signal power estimates (Section 3.3). 

11 ■ Remove any grid signals with zero power. 

12. While p < P go to step 5. 

After running the basic SPIRE algorithm, the signal grid will consist of mainly zero 
power signals with islands or regions of positive power signals. The first step in the 
modification, then, is to identify these regions. Once this is done, each region is 
separately processed using the basic SPIRE approach except that signal powers are 
initialized to half their previous value, and the regions are allowed to grow and shrink in 
size (steps 9 and 11). 

Subdividing the grid into regions reduces the amount of processing since the "zero" 
parts of the signal grid are ignored. It also improves convergence. Halving the signal 
powers results in simpler spatial shapes. Steps 9 and 11 also allow the region to develop 
in a smooth manner. 

Using this enhanced form of SPIRE for the same data used to produce Figure 5, the 
result is shown in Figure 7. Although not identical to Figure 4, the results are 
considerably improved compared to Figure 5 when the "simpler is better" guideline is 
followed. 

An upper limit may also be imposed on the number of regions P to further reduce 
processing without significantly affecting the results as long as P equals or exceeds the 
true number of spread-source signals. 

4.3   Signal Model Grid Spacing 

The angular spacing between point-source signals used in the signal model grid must be 
sufficiently narrow for the model to represent a real spread-source signal adequately. 
However, making this spacing too narrow can unnecessarily increase the number of 
computations since the increase in computations is inversely proportional to the square 
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F/gure 7: Results of processing K = 10000 samples of simulated data using the enhanced form of SPIRE. 

of the spacing. Hence it is useful to determine the widest spacing that can be used 
before introducing too much error. 

Since the resolving power of any antenna array is a function of the beamwidth of the 
array, a natural choice would be to use a spacing value which is some fraction of the 
minimum beamwidth of the array. Figure 8 shows several examples of the results of 
processing the same simulation example as before (see Figure 5f) where the signal 
model grid spacing was varied from 20% to 100% of the beamwidth (1.6° to 7.8°). 

Comparing the different spacings, good results were obtained for spacings up to 80% of 
the beamwidth. At 80% or more, extraneous signals begin to appear in the results 
suggesting that this represents the upper limit on the spacing. A similar conclusion was 
also drawn in [3] for the SML algorithm based on an analysis of bearing accuracy 
versus grid spacing. 

An advantage of the larger spacings is that since the processing time is inversely 
proportional to the square of the spacing, larger spacings means faster processing. A 
problem with larger spacings, however, is illustrated in Figure 9. In this example, two 
closely spaced point-source signals are detected but not resolved for spacings that are 
greater than half the angular distance between the signals (in this case 40% of the 
beamwidth or more). Hence one way to reduce the amount of processing, yet maintain 
acceptable resolution, would be to employ larger grid spacings for the early iterations 
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Figure 8: Results for SPIRE using various signal grid spacings showing (a) the simulation signal model, and the 

estimated models for spacings of (b) 20%, (c) 40%, (d) 60%, (e) 80%, and (f) 100% of the antenna array 

beamwidth. 
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and then finer spacings for the later iterations. 

(a) (b) 

(c) (d) 

Figure 9: Resolution of two point-source signals with bearings (4>\,ip\) = (—1.5°,29°) and 

(02, ^2) = (1.5°,26°) and signal powers s\/o2 = 20 dBandsl/a2 = 30 dB. The SPIRE signal grid spacings 

used were (a) 1°, (b) 2°, (c) 3°, and (d) 4°. 

Applying this coarse/fine spacing idea to the SPIRE algorithm, a fast version has been 
developed. Using the spacing scheme illustrated in Figure 10, the first 10 iterations are 
carried out using the coarse grid in the same manner as before but without the final 
noise power update. The signal power estimates are then interpolated from the coarse 
grid to the fine grid using a simple quadratic function. For example, all the signal 
powers of the coarse grid shown in the dotted box in Figure 10 are used to interpolate 
the fine grid signal powers within the solid box based on the expression 

(46) c0 + c\x + c2y + c3xy + c^x2 + c5y
2 

where x, y = { — 1,0,1} are the Cartesian coordinates of the signals in the solid box 
(the spacing between adjacent fine grid signals is 1 unit and the center of the box 
represents the origin). The coefficients CQ, .... C5 are determined using least squares 
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estimation techniques in conjunction with the known coarse grid signal powers and 
x, y = {—3,0,3}. The coefficients are then divided by 9 to maintain the same signal 
power density since the fine grid contains 9 times as many model signals. The 
coefficients are further divided by a factor of 2 which causes an underestimate of s in 
(46), but ultimately results in a smoother transition from the coarse to the fine grid 
signal power estimate. 

o o o o o o 
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o 
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CO > 

LU 

Azimuth -H> 

Figure 10: Grid layout for coarse/fine processing scheme. The large dots represent the positions of the point-source 

signals used for initial (coarse) processing and the small circles plus large dots represent the positions used for final 

(fine) processing. The coarse grid signals within the dotted box are used to interpolate the fine grid values within the 

solid box. 

Using the pared fine grid, ten more iterations are then carried out followed by the final 
update of the noise power. 

Along with the coarse/fine processing scheme, a further reduction in the amount of 
processing can be achieved by only updating signals in the fine grid which either have 
positive (nonzero) powers or border signals that have positive power. Since signals will 
usually be limited to small regions of the sky, the reduction in processing can be 
substantial. For example, using a 3° coarse spacing and 1° coarse spacing for the signal 
model grid, the computation time needed to produce Figure 5a was reduced by a factor 
of almost 8 (5.0 seconds versus 37.9 seconds). 

Using the coarse/fine scheme for the enhanced form of SPIRE discussed in Section 4.2, 
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instead of the basic form, producing Figure 5f resulted in a reduction in the 
computation time of a factor of slightly more than 3 (11.2 seconds versus 37.9 
seconds). The smaller improvement in this case was due to the fact that a portion of the 
computation time was taken up by extra processing stage which is the same whether the 
fast or basic version of SPIRE is used. 

No doubt variable spacing schemes could be successfully employed to reduce 
processing further (e.g., spacing as a function of beamwidth and/or spherical distances 
between grid points), but this avenue was not investigated. Additionally, since the 
computations of the signal powers can be performed in parallel, much faster versions of 
the SPIRE algorithms could be implemented using parallel processors. 

4.4    Data Sample Size 

As stated previously, the key assumption in the development of the SPIRE algorithm is 
that all signals are uncorrelated with each other including signals from different parts of 
the same spread region. Consequently for collection purposes, a sufficient number of 
data samples must be collected to ensure that proper decorrelation occurs in the sample 
data. 

To investigate the effect of the number of data samples K, a series of simulations was 
carried out using the same signal model used previously (shown in Figure 4), but 
varying the number of samples. The results are shown in Figure 11. 

The results show that the spread region is most affected, becoming "hillier", as the 
number of samples decrease. This is a result of the sensitivity of the estimation process 
to the kinds of ambiguities discussed in Section 4.2. Small perturbations due to noise 
and incomplete decorrelation can have large effects on the estimated spatial shape of 
the spatial region. Since larger spread regions require a greater number of grid signals 
for modeling, there is a greater possibility for ambiguities. By way of comparison, a 
point-source signal only requires one grid signal with no possibility of any ambiguity. 
For this particular set of results, the spread region is accurately modeled for K > 1000 
while the point-source signal is accurately modeled for all values of K, although the 
estimated signal exhibits spreading in elevation at the smaller values. 

A second series of simulations was carried out featuring the "H" shaped signal model 
shown in Figure 12. As before, the number of samples was varied. The effect of 
decreasing the number of samples in this case is similar to the previous example. 

To illustrate the improved abilities of the SPIRE algorithm to estimate the spatial power 
spectrum versus MV or MUSIC, some comparative results are shown in Figure 13 for 
K = 1000. The MV and MUSIC results shown in Figure 13 e and f were enhanced by 
showing only the spectrum within 10 dB of the peak value. This 10 dB threshold was 
based on knowledge of the actual spatial power spectrum of the signal - knowledge 
which wouldn't normally be available in practical applications. 
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Figure 11: The effect of varying the number of data samples on the performance of SPIRE. The results shown are 

for (a) K = 10000, (b) K = 1000, (c) K = 300, (d) K = 100, (e) K = 50, and (f) K = 25. 
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Figure 12: The effect of varying the number of data samples on the performance of SPIRE for a signal with the "H" 

shaped spatial power profile shown in (a). The SPIRE results shown are for (b) K = 1000, (c) K = 300, (d) 

K = 100, (e) K = 50, and (f) K = 25. 
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Figure 13: A comparison of the estimation accuracy of SPIRE, MV, and MUSIC for the "H" shaped signal using 

K = 1000 and showing (a) the true signal spatial power spectrum, (b) the SPIRE result, (c) the MV result, (d) the 

MUSIC result, (e) the modified MV result, and (f) the modified MUSIC result. For the modified results, only features 

within 10 dB of the maximum peak value are shown. 

28 DREO TR 2000-099 



Finally, the effect of sample size on the measured model error e is shown in Figure 14. 
The plotted model error is the average of the error values generated when processing 
the simulated data used to produce Figure 11 (the spread-source and point-source 
signals) and Figure 12 (the "H"-shaped signal). The results show that the "H"-shaped 
signal was easier to model than the spread-source signal plus point-source signal. The 
reasons are likely due to the ambiguity problem discussed earlier (the wider angular 
area of the spread-source signal would suffer the ambiguity problem more than the 
narrow ridges of the "H"-shaped signal), and the quantization effect (the point-source 
can only be exactly modeled if its bearing corresponds with the bearing of a signal in 
the signal model grid). 

10000 

Block Size 

Figure 14: Model error as a function of sample size. The upper curve (solid line) shows the results for the same data 

used in Figure 11 (point-source and spread-source signals). The lower curve (dashed line) shows the results for the 

same data used in Figure 12 ("H"-shaped signal). 

4.5   Number of Signals 

The general rule used to determine the maximum number of signals that may be 
estimated using a superresolution algorithm is N - 1 where N is the number of 
sensors. This rule applies to algorithms which make no assumption about signal 
correlation (i.e. the correlations are implicitly or explicitly estimated). 

The SPIRE algorithm assumes that the signals are fully uncorrelated so that estimation 
of the signal correlations is not required. As a result, the JV - 1 limit can be exceeded 
as illustrated in Figure 15 where the bearings of 13 uncorrelated point-source signals 

DREOTR 2000-099 29 



(Figurel5a and b) are correctly estimated using an array of 12 antennas (Figure 15c and 
d). A few spurious signals were also estimated with the maximum false peak in the 
spectrum still 5 dB below the minimum true signal peak. 

The MV algorithm also has the capability to exceed the N - 1 limit as illustrated in 
Figure 15e and f where the 13 largest peaks correspond to the true signals. However, the 
resultant spectrum is considerably more difficult to interpret than the SPIRE spectrum 
with many more false peaks, and with some of them coming within 1 dB of a true peak. 

The MUSIC algorithm is limited to N - 1 signals and consequently no results are 
shown here. 

Although the results suggest that there is no hard upper limit for uncorrelated signals, 
they illustrate that estimating an increasing number of signal directions comes at the 
price of lower accuracy. The SPIRE algorithm was able to estimate all 13 signals in the 
example, but the results are not as good as the results shown in Figure 9a or Figure 1 lb 
where only two signals were involved. From the practical point-of-view, it seems more 
reasonable to use the SPIRE algorithm for environments where the number of signals is 
somewhat less than the number of sensors. 
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Figure 15: An example of estimation of 13 point-source signals using 12 antennas, K = 1000, and SNR = 20 dB, 

showing (a) the actual spatial signal spectrum, and (b) azimuth profile,(c) the spectrum estimated using enhanced 

SPIRE and (d) azimuth profile, and (e) the spectrum estimated using MV and (f) azimuth profile. 
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5.    SPIRE PERFORMANCE 

The previous section dealt with computational issues relating to the SPIRE algorithm. 
In this section, the effect of various uncontrolled parameters on the performance of the 
SPIRE algorithm is studied. These parameters are discussed in the next few sections 
and include SNR, signal spreading, and angular spacing between signals. Where 
appropriate, the results using the MV and MUSIC DF algorithms are also shown for 
comparison purposes. 

Since the SPIRE algorithm is designed to estimate the direction of signal power 
regardless of the spatial spreading of the signal source (unlike other algorithms such as 
MUSIC and MV which assume point sources only), the peaks in the estimated spatial 
spectrum do not necessarily yield the true direction of spread-source signals; 
particularly when the ambiguity problem is taken into account (consider Figure 1 If for 
example). A more appropriate method is to take the power weighted average of all the 
grid signals associated with a given region. For example 

(4V) (f>k =   — 22 sik4>ik 
Mk 

Mk 

1    Mk 

(48) ipk= Jf^2 Sik^ik 

where 4>^ and ip^ are the azimuth and elevation bearing estimates of the kth signal 
region, M^ is the number of grid signals required to model the region, s^ is the signal 
power of the ith grid signal in the kth signal region, and cpn- and ipik are the associated 
azimuth and elevation bearings of the same grid signal. 

Although no research has been done to determine whether the above bearing estimation 
method is optimum, for simulation testing it was found to yield results which were 
better than those obtained when using the spectral peaks. 

Signal power was estimated as the sum of the grid signals in the associated region, that 
is 

Mk 

(49) pk = YlSik 

i=i 

where pk is the signal power. 

In this section, and throughout the rest of this report, the grid size used for the SPIRE 
model was 1° x 1°, unless otherwise specified. 

For assessment purposes, the processed results were quantified in two ways. The first 
was the measurement of the failure rate of signal bearing estimates, and the second was 
the measurement of the accuracy of the successful estimates. A bearing estimate was 
considered to be a failure if it deviated from the true signal bearing by more than half 
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the array beamwidth (taking into account both the azimuth and elevation beamwidths). 
Accuracy was determined by calculating the root-mean-squared (RMS) error of the 
estimates according to 

(50) RMS Error   =   J— ^(<£m - </>m)2 + (^m ~ VvJ2 

where the summation was performed for all H successful estimates of signal m. 

5.1    Effect of Noise 

The effect of noise was investigated through simulation. In the first series of 
simulations, a single point-source signal at (<£, tp) = (180°, 30°) was generated and the 
SNR was varied from -20 dB to +40 dB in 2 dB increments. One hundred trials were 
repeated for each SNR setting. In the second series of simulations, the point-source 
signal was changed to a spread-source signal with spread parameters 
(A0, A,/,) = (30°, 15°), but all other parameters remained the same. The results after 
processing the data with the SPIRE algorithm are shown in Figure 16. For comparative 
purposes the results using the SML algorithm are also shown. 

Several features of the results are worth pointing out. The SNR at which the failure rate 
dramatically departs from 0% is called the threshold SNR. For the point-source this 
occurs between -12 and -10 dB and for the spread-source, it is worse, occurring about 
-6 dB for the SPIRE algorithm and -8 dB for the SML algorithm. The poorer 
performance for the spread-source signal (including both threshold and accuracy) 
compared to the point-source signal is a function of the amount of spreading. 

The effect of signal spreading on accuracy can be attributed to two factors: signal 
model uncertainty and the filter effect (see also [1]). The first factor, signal model 
uncertainty, arises from the fact that the spatial model for the spread-source signals is 
stochastic and requires a sufficient number of snapshots to build up the appropriate 
statistics in the data as was discussed in Section 4.4. For a single point-source signal, a 
single snapshot is sufficient. For a spread-source, the number of snapshots required to 
achieve a given accuracy rises as the spread region increases in size. Conversely, for a 
given number of snapshots, accuracy degrades as the spread region increases. 

The second factor, the filter effect, can be understood by considering that many 
advanced DF algorithms, such as MV, MUSIC, SML, and SPIRE, can be interpreted as 
techniques which work by designing spatial filters to reject the signal content of the 
data. Point-source signals are matched by very narrow notch filters while spread-source 
signals are matched by appropriately shaped band rejection filters. The greater the 
amount of noise rejected by the filter, the greater the effect on the estimation error since 
the idea is to reject the signal but pass the noise. Hence estimation accuracy degrades as 
the spread region increases. 

The scales used to display the RMS bearing errors in Figure 16(b) were chosen because 
they linearize the accuracy results for the point-source signal above the threshold SNR. 
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Figure 16: Effect of the signal-to-noise level on estimation performance of the SPIRE (solid lines) and SML (dashed 

lines) algorithms showing (a) the failure rate and (b) accuracy of the point-source, and (c) the failure rate and (d) 

accuracy of the spread-source signal. 
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In this region, for every 20 dB increase in SNR the RMS bearing error is reduced by a 
factor of 10. Written mathematically, the relationship is expressed as 

(51) ecxy/SNR 

where e is the RMS bearing error. The spread-source also exhibits the same behaviour 
between -8 and 0 dB, but above this SNR the error begins to level out as the uncertainty 
in the signal model begins to dominate the error (as discussed previously in Section 
4.4). At higher SNR's, the only way to improve accuracy would be to use a larger 
sample size. 

Comparatively speaking, the performance of the SPIRE algorithm is worse than the 
SML algorithm. For the point-source signal, the failure rate was the same for both 
signals as was the accuracy for an SNR less than 10 dB. For an SNR between 10 dB 
and 30 dB, the RMS bearing error was about 1.4 times greater for the SPIRE algorithm 
than the SML algorithm. Above 30 dB, the increase in the RMS error for the SPIRE 
algorithm is due to the signal model grid spacing chosen (1° x 1°). For a smaller grid 
spacing (i.e. 0.5° x 0.5°), the SPIRE error reduces from 12 times to 1.4 times the SML 
error. 

For the spread-source signal, the SPIRE algorithm again produces less accurate results 
with RMS errors up to 3 times that of the SML algorithm. 

Although the poorer performance of the SPIRE algorithm might at first seem 
disappointing, it is a consequence of the greater adaptability of the SPIRE signal model. 
The SML algorithm assumes a fixed shape and power density for each signal's spatial 
profile. In these examples, this profile was identical to what was actually simulated 
giving the SML algorithm an advantage. In the real world, this would not be true in 
many situations giving the SPIRE algorithm an advantage since it is able to adapt to the 
conditions. 

Note that when used to process the same data, the MUSIC and MV algorithms 
produced the same results as the SML algorithm for the point-source signal, but were 
about 20x worse for the spread-source signal. 

The last set of results displayed for the noise simulations is the effect of signal-to-noise 
ratio on the model error which is shown in Figure 17. Comparing the two signals, 
model error for the spread-source is relatively independent of the noise level, while the 
model error for the point-source increases with decreasing noise level. This is due to 
the fact that the point-source cannot be perfectly modeled unless a signal in the model 
grid is exactly aligned in bearing with the actual signal (in the simulations, the nearest 
grid signal was misaligned from the actual signal by 0.5° in both azimuth and 
elevation). As the SNR is increased, the contribution of the noise component decreases 
making the modeling mismatch in the signal component more pronounced. This error 
could be reduced by decreasing the grid size. 
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Figure 17: The effect of noise on model error. The solid line shows the results for the spread-source signal and the 

dashed lines shows the results for the point-source signal. 

5.2   Detection of a Weaker Signal 

One important test of a DF estimator designed for high latitude HF operation is the 
ability to detect a weaker point-source signal in the presence of stronger spread-source 
signals. To evaluate the performance of the SPIRE algorithm, simulations were run 
involving a single spread-source with a fixed bearing and a single point-source whose 
bearing was adjusted incrementally, beginning with a large initial angular difference, 
until the two bearings coincided. After each increment, the signal power of the 
point-source was increased from a low value in 0.5 dB intervals until the failure rate 
dropped below 5% (5 out of 100 trials). The corresponding SNR of the point-source 
signal is defined here as the threshold SNR and provides a good indication of the limits 
of detectability of the point-source signal for the given signal environment. The 
relevant signal and noise parameters are shown in Table 1. 

Table 1: Signal Parameters for Signal Detectability Simulation 

Signal </> </> A0 A^ Power 
l 
2 

noise 

180° 
adjusted 

30° 
30° 

30° 
0° 

15° 
0° 

OdB 
adjusted 
-20 dB 

One practical difficulty with the SPIRE algorithm is that as the separation between the 
two sources becomes smaller and smaller, the regions begin to merge so that one region 
describes two sources. For the sake of these simulations, when the regions had merged, 
the peak in the combined region most closely corresponding to the weak signal was 
used to determine the bearing estimate of the weak signal. This was considered 
reasonable for separations of 15° to 10°, since the weaker signal was clearly 
identifiable when examining the spatial spectrum. At small angular separations, 
however, no attempt was made since separating the peak of the weaker signal from the 
peaks associated with the stronger signal was essentially a hopeless task. 
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The results from the simulations are shown in Figure 18. In this case, the failure rate is 
not shown since it was fixed to approximately 5%. From the results it is clear that when 
the point-source and spread-source signals are well separated, 25° or more 
(> 1.2<f>Bw), the presence of the spread-source signal has a small but significant effect. 
For example, the threshold SNR for a point-source without any other signals present 
occurs at -12 dB (see Figure 16). In the presence of the spread-source, the threshold 
SNR ranges from -10 to -8 dB, a degradation of 2 to 4 dB. As the separation between 
signals is reduced from 25° to 10°, the threshold SNR increases dramatically to 8 dB 
which is 20 dB higher than when no spread-source is present. 

The differences between the wide and narrow separation cases can be understood in 
terms of using a spatial filter to suppress the effects of the spread-source signal. In the 
wide separation case, the filtering can be accomplished easily, leaving only the noise as 
the main source of error. In the narrow separation case, it is more and more difficult to 
filter out the spread-source signal independently of the point-source signal as the 
separation decreases. Consequently, the spread-source signal begins to act as a strong 
noise background and the threshold increases accordingly. 

The accuracy results for the two signals are relatively constant for wide spacing and 
relatively independent of the presence of each other. For example, in the single signal 
case, the accuracies were measured to be 0.33° for the spread-source signal (20 dB 
SNR) and no point source signal, and 0.7° for the point-source signal (-12 dB SNR) and 
no spread-source signal - worse for the point-source signal due to the much lower SNR. 
For narrower spacings, the threshold signal power of the point-source signal increases, 
degrading the accuracy of the spread-source signal until the separation becomes as 
small as 8°. The accuracy of the point-source remains in the range of 0.5° - 1.5° for 
most separation angles with the largest errors occurring for the smaller separations. 

The simulations were also repeated using both the SML and MUSIC algorithms. The 
assumed number of signal directions for the SML algorithm was two. For the MUSIC 
algorithms, six directions were assumed, since occasionally up to five directions were 
required to describe the spread-source leaving at least one direction for the 
point-source. In most cases, however, only three or four signal directions were required 
for the spread-source signal, resulting in one or more false direction estimates. 

Generally, the necessity of using several signal directions to describe a spread-source 
signal and the problem of extraneous signals, makes the interpretation of the MUSIC 
results somewhat problematic. For the sake of this report, only the two (out of six) 
estimated signal bearings closest to the true signal bearings were used when generating 
the statistical results. Additionally, since for separation angles less than 10° there was 
no obvious way to determine whether a peak was associated with the spread-source 
signal or the point-source signal (like the SPIRE algorithm), no statistical results were 
calculated for these angular separations. 

The failure and accuracy results for SML are shown by the dashed lines in Figure 18, 
and the corresponding results for MUSIC are shown by the dash-dot lines. 
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Figure 18: Effect of angular spacing on the ability to detect a weaker point-source signal in the presence of a 

stronger spread-source signal showing (a) the detection threshold SNR for the weaker point-source signal, (b) 

accuracy of the spread-source estimates at threshold, and (c) accuracy of the point-source estimates at threshold. 

The solid lines represent the SPIRE results, the dashed lines represent the SML results.and the dash-dot lines 

represent the MUSIC results. 
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Figure 19: Detection of a weaker point-source signal in the presence of a stronger spread-source signal using 

MUSIC. The azimuth spectrum is shown for an elevation angle ofip = 30°. The simulation parameters for the noise 

and spread-source are listed in Table 1, and the point-source parameters were (a) <fi — 150° with a signal power of 

-7.5 dB and (b) 4> = 172° with a signal power of 14.5 dB. When the separation between the spread-source and 

point-source is too narrow, as in (b), there is confusion as to which spectral peak belongs to which signal. 
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The results show that over the range of separation angles tested, SPIRE is able to detect 
signals 2.5 dB weaker than MUSIC. Compared to SML, performance is the same for 
separations greater than 20°, but generally worse for smaller separations. Below 10°, 
the SML algorithm is the only algorithm capable of separating the two sources. 

The accuracy in estimating the point-source signal direction was the same for all three 
algorithms. However, since the SML and SPIRE algorithms had lower thresholds, this 
implies that tested at the same SNR (e.g., the MUSIC threshold) the SML and SPIRE 
algorithms are more accurate than MUSIC. The accuracy of MUSIC for estimating the 
direction of the spread-source signal was very poor, highlighting the difficulty of 
estimating spread-source signals using a point-source model. The accuracy of the 
SPIRE algorithm was poorer than the SML algorithm, indicating that some degradation 
occurs when the shape of the signal's spatial power spectrum is not known a priori. 

Generally the results show that for signal environments with spread-source signals, 
improved modeling leads to significantly better performance. 
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6.    PERFORMANCE USING HIGH LATITUDE OFF-AIR 
DATA 

The ultimate test for any algorithm is against the actual data for which the algorithm 
was designed. In the following sections, an analysis of the SPIRE algorithm is carried 
out using high latitude off-air HF data. This analysis also includes results from the MV 
and MUSIC algorithms. 

In the comparative analysis of these algorithms, the SPIRE results appear to be worse 
than the MV algorithm. However, it was found that mutual coupling problems almost 
certainly affected the data measurements possibly making the results for the MV 
algorithm look better than they should have been. The diagnosis of this problem using 
the SPIRE error function, and subsequent discussion, is also included in the following 
analysis. 

6.1    The Equipment 

The measurement system used to collect the data was an experimental 12 channel 
receiver system, called "Vortex", located at CFB Alert on the northern tip of Ellesmere 
Island in Northern Canada (82.50° N, 62.35° W). The receiver system was connected 
to an antenna array which had the geometric configuration shown in Figure 20. The 
array utilized 8 elevated feed monopole antennas from the inner ring of a Pusher array 
(a circular array with 24 antennas) and 4 outlying antennas (also elevated feed 
monopole antennas) which were added to increase the array aperture. 
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' , ' / .      l -'- - - 

1 i   Xii 
A» 

!4 

r---j----/ /      ~~'~~~ 

i 

1 ' ""'----/-"--' 
-,---,*----<-_        <     :    7----' 

L ~ - - L _ ' / '~ ~ ~ -/-----__      ' 

Figure 20: Three dimensional view of the Vortex antenna array. Each grid square has a dimension of 1A x 1 A. 
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The Vortex receivers were used to downconvert the input signals from HF to 2.5 kHz 
with a filtered bandwidth of 3.5 kHz. The downconverted signals were then digitized at 
a rate of 10 kHz and the data stored for later processing. 

6.2    Processing Considerations 

To generate the covariance estimates, an FFT was performed on each sample block of 
12 x 16000 data points and only the positive frequency data from 3.8 to 4.2 kHz was 
retained. This served the dual purpose of converting the data to IQ format and 
suppressing interference due to noise and other unintended HF signals. The data 
covariance matrix was then formed directly from 10 consecutive samples of this 
frequency domain data. 

Although a value of K = 10 x 16000 (representing 16 seconds) would appear to be 
sufficient based on the discussion in Section 4.4, this does not take into consideration 
the requirement for sample to sample decorrelation. The time required to achieve this 
decorrelation is related to the Doppler spreading of the signal, and can be approximated 
by r = 1 /{Doppler Spread). Using a Doppler spread value of 40 Hz (see discussion in 
Section 2.3), this gives a value of r = 25 ms. For 16 seconds of data, this corresponds 
to an effective sample size of K = 640. Since 40 Hz represented one of the larger 
values of Doppler spreading observed for the data discussed in [10], the effective 
sample size for the data discussed here may have been lower. For this reason, the 16 
second choice for the sample size is analyzed in more detail in Section 6.5.1. 

When processing the data using the SPIRE algorithm, it was found that the bearings of 
peaks in the estimated spatial spectrum were often noticeably different than bearings 
computed using the weighted region approach as defined in (47) and (48). This was due 
to the fact that the estimated signal regions were often asymmetric and sometimes 
contained multiple peaks. In some cases, it also appeared that the peak derived bearings 
were more accurate than the weighted region bearings. Consequently, peak derived 
bearings were also included in the analysis. 

To overcome the problem of quantization for the peak derived bearings (since peak 
locations were restricted to bearings of the signal model grid), more accurate bearings 
were interpolated by fitting a Gaussian shape to the grid peak and its immediate 
neighbouring points. The peak of the fitted Gaussian function was then used as the 
improved bearing estimate. 

To denote the difference between the SPIRE bearing estimates determined using the 
weighted region approach and bearing estimates determined using the peaks approach, 
the former are termed "region bearings" while the latter are termed "signal bearings" 
throughout the rest of this report. 

For processing using the MUSIC algorithm, the 'number of signals' parameter was 
calculated using the Akaike Information Criterion as described in [17]. 

42 DREO TR 2000-099 



Both the MUSIC and MV algorithms were adapted to use the measured noise 
covariance C^ by modifying the steering vector and data covariance according to 

(52) 
Cjy 

1 

cv« 

(53) R^ <VR<V 

where C,, was the measured noise covariance matrix. 

The noise covariance C,, was determined in the same way as the signal covariance 
matrix except all the positive frequency data in the passband was retained except the 
signal portion from 3.8 to 4 kHz. The measurements over a period of approximately 20 
minutes were then averaged to ensure a stable estimate 

6.3 The Data 

Two data sets were chosen for this discussion. Both collections were of signals 
originating from the CFH transmitter located in Halifax, Nova Scotia, Canada. The 
great circle signal bearing of the transmitter was 181.9°. The received signal was 
collected at a frequency of 10.9445 MHz. 

The first data set was collected on September 2, 1995 from 13:25:28 to 17:40:12 UT 
during the Arctic daytime. The second data set was collected on January 24, 1996 from 
21:01:92 to 23:32:12 during the Arctic night (which lasts 24 hours a day at that time of 
year). 

Of the two signal periods, the first represents a time when benign signal propagation 
conditions would normally be expected (daytime) while the second represents a time 
when disturbed conditions might be expected [18]. This is, in fact, what was observed. 

6.4 DF Results 

The DF results for the two data sets, with the three different algorithms, are shown in 
Figures 21 and 22. Additional results are also shown for the SPIRE algorithm in 
Figures 23 and 24, including region bearing estimates and power, for both data sets. For 
the SPIRE region estimates, results were discarded if the corresponding region power 
was less than 0 dB. 

For the September 1995 data, the results in Figure 21 and Figure 23 show that the MV 
algorithm produced the most accurate results and the SPIRE algorithm produced the 
worst - the exact opposite from what was expected. 

The two signal bearings estimated by the SPIRE algorithm in Figure 21a and b, are 
peaks from the same region so that the scatter in the estimates is a reflection of the 
width of the corresponding region, i.e., tens of degrees of in both azimuth and elevation. 

DREO TR 2000-099 43 



The large amount of signal spreading explains the poorer performance of the MUSIC 
algorithm compared to the MV algorithm. MUSIC'S superior resolving power for 
point-source signals works against it when dealing with spread-source signals. The 
poorer accuracy of the SPIRE algorithm, however, appears to be due to entirely 
different reasons which are discussed in the next section. 

For the January 1996 data, the results are poor for all three algorithms although MV 
and SPIRE appear to produce "cleaner" results in Figures 22 and 24, i.e. appear to track 
moving features with less scatter. The greater scatter in the MUSIC estimates is 
consistent with idea that MUSIC is too finely tuned for point-source signals. 

Comparing the bearing estimates to the power levels shown in Figure 24c, the times of 
greatest bearing errors occurred when the signal power was low (less than 0 dB) 
indicating the utility of making these measurements as a means of qualifying the 
measurements. 

Despite the worse than expected bearing accuracy, the SPIRE results do provide 
valuable insights into the signal environment. For example, from the power estimates 
for September 1995 data set, there appeared to be only one dominant signal scattering 
region active; generally in the great circle direction. This is in keeping with the 
expectation that the signal propagation condition would be benign for that given time 
period. However, comparing the region bearing estimates in Figure 23a and b to the 
signal bearing estimates in Figure 21a and b, indicates that the dominant region had a 
complex spatial power spectral shape (i.e. more than one peak) and that it was quite 
dynamic (i.e. the peaks changed location from estimate to estimate, especially the 
weaker peak). 

Although the region bearing estimates in Figures 23 and 24 exhibit less scatter than the 
corresponding signal bearing estimates in Figures 21 and 22, the accuracy of the region 
bearing estimates appears to be worse overall. The weighted approach to estimating 
region bearings was based on the premise of a simple hill-like shape for the spatial 
power distribution of the scattering region. The complex shaped regions and dynamic 
nature of these regions may make the weighted approach too simplistic. Better 
accuracy may entail breaking complex shaped regions into subregions and then 
estimating the weighted bearing of each of these subregions. 

Alternatively, the apparently poorer accuracy of the weighted region approach 
compared to the peak approach, and the apparently poorer accuracy of the SPIRE 
algorithm compared to the MV algorithm, may be a consequence of the effect of 
mutual coupling as discussed in the next section. 

6.5    Problems with the Data 

The apparently poorer than expected performance of the SPIRE algorithm, compared 
with the MV algorithm, suggests a possible problem with either the SPIRE signal 
model or the way the data was generated (equipment problems). To address this issue, 
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Figure 21: Azimuth and elevation bearing results for HF high latitude off-air data collected on September 2, 1995 

using the SPIRE, MV algorithm and MUSIC algorithms. The azimuth bearing estimates are shown in (a) for SPIRE, 

(c) forMV, and (e) for MUSIC. The corresponding elevation bearing estimates are shown in (b), (d), and (f), 

respectively. Only the two strongest signals are shown with black representing the stronger of the two signals and 

red representing the weaker of the two. The solid horizontal lines in (a), (c), and (e) represent the great circle 

bearing. 
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Figure 22: Azimuth and elevation bearing results for HF high latitude off-air data collected on September 2, 1995 

using the SPIRE, MV algorithm and MUSIC algorithms. The azimuth bearing estimates are shown in (a) for SPIRE, 

(c) for MV, and (e) for MUSIC. The corresponding elevation bearing estimates are shown in (b), (d), and (f), 

respectively. Only the two strongest signals are shown where black represents the stronger of the two signals and 

red represents the weaker of the two. The solid horizontal lines in (a), (c), and (e) represent the great circle bearing. 
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Figure 23: More results of processing the January 24, 1996 data using the SPIRE algorithm and showing the 

estimated (a) region azimuth bearings, (b) region elevation bearings, and (c) region signal-to-noise levels. Only the 

four strongest regions are shown and they are colour coded black, red, orange, and yellow with black representing 

the strongest region and yellow the weakest region. 
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Figure 24: More results of processing the January 24, 1996 data using the SPIRE algorithm and showing the 

estimated (a) regions azimuth bearings, (b) region elevation bearings, and (c) region signal-to-noise levels. Only the 

four strongest regions are shown and they are colour coded black, red, orange, and yellow with black representing 

the strongest region and yellow the weakest region. 
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several different aspects of model and data generation were investigated, namely, signal 
correlation and sample size, spacing and position of the signal model grid, and mutual 
coupling. 

6.5.1     Testing Signal Correlation 

The amount of data used to generate each data covariance matrix was assumed 
to be sufficient for decorrelation of the signal across each region. To test the 
validity of this assumption, varying amounts of the September 1995 data were 
used to generate the data covariance estimates and then the SPIRE error level 
determined. Repeating this 100 times for each sample size, the averaged 
model error results are shown in Figure 25. 

0.01 0.1 1 10 

Sample Size (seconds) 
100 

Figure 25: Model error as a function of sample size. The upper curve (solid line) shows the results when the 

September 2, 1995 data is processed. The lower curve (dashed line) shows the simulated results. 

To provide a reference for comparison purposes, simulated data was also 
generated and the averaged model error computed in the same way. The 
simulated data was generated according to the expression 

(54) X = WsNj + WnN2 

where the spatial filter matrices were defined as 

(55) Ws=  (C-a2Rn)2 

DREO TR 2000-099 49 



(56) Wn = R-n 

CT2^ and Nj and N2 were spatially white noise matrices. The quantity C 
was the noise free signal model estimated by the SPIRE algorithm from an 
arbitrary sample of the actual data (sample length of 16 seconds). The time 
domain data in the rows of Ni was filtered to have the same spectral 
characteristics shown in Figure 26, which is an example of the spectral 
characteristics of the CFH signal when a single tone was being broadcast. The 
time domain data in the rows of N2 was not filtered (white noise only). 

200 400 600 

Frequency (Hz) 

(a) 

200 400 600 

Frequency (Hz) 
800 1000 

(b) 

Figure 26: Spectral characteristics of the CFH signal are shown in (a) for an example time period when a single tone 

was being transmitted. The spectral characteristics of the filter used to replicate the signal part of the spectrum are 

shown in (b). The X-axis in both plots represents the frequency with respect to the center of the receiver passband. 

The purpose of generating the simulated data in the above way was to 
replicate, as closely as possible, the actual signal characteristics without 
violating the assumptions made about signal correlation. Hence Ni would 
have a much longer correlation constant than N2 due to the temporal filtering. 
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The model error results for the simulated data are shown in Figure 25. 
Comparing the actual and simulated results confirms that there is a problem 
with the model, but suggests that it was probably not due to insufficient 
correlation. For sampling times greater than about 1 second, the modeling 
error for the off-air data begins to flatten out while the modeling error for the 
simulated data continues to decrease. This might suggest that an extremely 
long correlation time was involved, however, even combining data from 
different days/months did not significantly reduce the model error showing 
that correlation was not the problem. 

6.5.2     Testing the Model Grid 

Another possible explanation is that the recorded signals in the data had a 
strong point-source component so that misalignment of the model grid 
contributed to the error, as discussed in Section 5.1. However, reducing the 
model grid spacing to 0.5 x 0.5 had no effect on the model error, nor did 
adjusting the grid up to ±0.5° in azimuth and elevation - essentially ruling out 
misalignment as the source of model error. 

6.5.3     Testing for Coupling Effects 

Having ruled out problems which could be mitigated by appropriately 
processing the data, the most likely problem was antenna coupling with the 
local environment (local site multipath) as well as coupling with other 
antennas in the array (mutual coupling). Coupling problems were extremely 
likely given that the local terrain was neither perfectly flat nor the ground 
perfectly conducting (frozen ground has low conductivity), and that the 
antennas in the inner Pusher ring are spaced closer than 1/4 wavelengths at 
10.9445 MHz, virtually guaranteeing antenna to antenna coupling. 

To investigate further, the effects of antenna coupling were added to the 
simulation models using the method outlined in [19] where impedances were 
calculated using the approach in [20]. At best, this can only be considered an 
approximation since the antenna is modeled to be an ideal monopole on a 
perfectly conducting ground. In reality, the antennas were elevated feed 
monopoles on poorly conducting ground. Hence, the main purpose of the 
simulation was to highlight the kinds of errors that multipath causes, not 
replicate the exact errors that actually occurred. 

Using modeling errors as a guide, the initial simulations showed that the 
modeled mutual coupling voltage levels were too high, so these levels were 
reduced to 30% of their unmodified values. Using this adjusted mutual 
coupling model, the theoretical effect of sample size on model error is shown 
in Figure 27. In this case there is much better agreement between the 
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simulated results and the actual results than in Figure 25 strongly implicating 
antenna coupling as the source of errors. 

100 

100 

Sample Size (seconds) 

Figure 27: Model error as a function of sample size. The upper curve (solid line) shows the results when the 

September 2, 1995 data is processed. The lower curve (dashed line) shows the simulated results when mutual 

coupling effects are included. 

To illustrate how modeling errors translate into bearing errors, an example of 
the effects of mutual coupling on the SPIRE estimated power spectrum is 
shown in Figure 28b. Comparing this to the ideal spectrum in Figure 28a, the 
major effect observed is the distortion of the shape of the signal region and the 
introduction of false regions. The shape distortion leads to biasing in the 
bearing estimates while the false regions leads to false estimates (i.e. wild 
bearings). In the worse case, distortion can lead to extra peaks in the main 
signal region causing potential errors for peak search methods. 

Given the distorting effects of antenna coupling, it would be reasonable to 
suggest that the complex nature of the power spectrum shown for the off-air 
example Figure 28c was mainly due to the effect of multipath - the true power 
spectrum being simpler in nature. Unfortunately, the evidence is not strong 
enough to make this assessment with any certainty. 

More compelling evidence is shown in Figure 29. Five hundred samples of 
data were generated using the same signal model used in Figure 28 (including 
the mutual coupling effects) except that the azimuth bearing was slowly 
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Figure 28: The effect of mutual coupling showing (a) the spatial power spectrum for a simulated signal, (b) the 

estimated SPIRE spectrum when mutual coupling is introduced, and (c) the estimated SPIRE spectrum for real data 

(a sample from the September 1995 data). 
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changed from 171.9° to 191.9° in a uniform manner. Estimates were made 
using the SPIRE algorithm (weighted and peak approach) and the MV 
algorithm. The true bearing is shown as the solid line in each of the plots. 

The most remarkable thing about these results is that for samples 150 to 500 
the MV algorithm produced estimated bearings of 180° ± 1° even though the 
actual bearings changed from 175.9° to 191.9°. This "flattening" effect is also 
apparent for the SPIRE algorithm results when the peak method was used, but 
not as severe. When the weighted region method was used, the flattening 
effect disappears. There is some biasing of up to 0.5°, but this is substantially 
less than the results for the peak method or the MV algorithm. 

The main implication is that the superior performance of the MV algorithm 
for the off-air data (particularly the September 1995 data), might conceivably 
have been an illusion. That is, it is entirely possible that the great circle 
bearing was coincidentally favoured due to the effects of mutual coupling 
making the MV results appear better than they should have been. 

Regardless of the relative performances observed, it seems highly probable 
that the results for all the algorithms were adversely affected by mutual 
coupling. Hence, a more accurate assessment of algorithm performance is not 
possible unless coupling effects can be calibrated. Ideally, this could have 
been accomplished using an airborne transmitter to measure the antenna array 
response as a function of azimuth and elevation angles for each frequency of 
interest. Unfortunately, due to logistical and cost reasons, this wasn't done. 
Calibration methods based on the data itself have been developed, but to the 
author's knowledge, none are appropriate for the high latitude signal 
environment. Hence more research is required in this area. 
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Figure 29: The effect of mutual coupling on bearing estimation for a moving spread-source showing the azimuth 

bearings estimates for (a) the SPIRE algorithm using the weighted region approach, (b) the SPIRE algorithm using 

the peak approach, and (c) the MV algorithm. The true bearings are shown by the solid line. 
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7.     CONCLUSIONS AND RECOMMENDATIONS  

The Sfatial /ncoherent /?egion Estimator (SPIRE) is a new algorithm based on 
maximum likelihood principles which was developed to estimate the spatial power 
spectrum using measurements from an N-channel antenna array. The algorithm is 
distinguished from other spectral estimation algorithms in that it assumes that all 
signals are uncorrelated but makes no assumption about their spatial shape and power 
distribution. 

Several user controlled aspects of the algorithm were examined through simulation 
testing. This included resolving spatial ambiguities, determining the most appropriate 
grid spacing for the signal model and the minimum sampling size, and exploring the 
limit on the maximum number of signals that could be handled. 

The testing showed that the easiest way to deal with spatial ambiguities is by choosing 
the simplest signal model which fits the data. The testing also showed that the grid 
spacing and sampling size parameters could be varied for a range of values over which 
estimation performance was either virtually unaffected or predictable. Additionally, it 
was also shown that the SPIRE algorithm can estimate a greater number of signals than 
there are antennas in the antenna array, exceeding the traditional N — 1 limit (where N 
is the number of antennas). However, practically speaking, remaining below this limit 
is more advisable. 

Simulation testing of the SPIRE algorithm was also carried out to evaluate its 
performance as a function of various environmental conditions. This included the effect 
of noise, signal spreading, and the detection of a weaker signal in the presence of a 
stronger signal. In all cases, the performance of the SPIRE algorithm was predictable. 
Accuracy was similar to other superresolution algorithms when dealing with signals 
with no spatial spreading, but better when there was spreading. 

Finally, testing was performed using off-air data collected at the Arctic site CFS Alert. 
The results were inconclusive as antenna mutual coupling effects were found to have 
corrupted the data. The analysis of the data did, however, showcase the advantages of 
the SPIRE algorithm in helping diagnose the non-ideal nature of the off-air data. 

Generally it was demonstrated that the SPIRE algorithm is able to estimate the spatial 
power spectrum of the radio environment with a higher resolution and better accuracy 
than previously possible. As an analytical tool, the SPIRE algorithm provides a 
powerful new method for analyzing the spatial nature of signals, as well as a means of 
detecting data and equipment problems. Although originally developed for the high 
latitude HF signal environment, the algorithm can be applied to any iV-channel data set 
provided the signals are uncorrelated both temporally and spatially. 

Mutual coupling of antennas in the measurement array remains a problem. Although 
there is reason to believe that the SPIRE algorithm may be less sensitive to mutual 
coupling problems than other algorithms, it is still adversely affected. For the high 
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latitude HF measurements made from CFS Alert in the mid 1990's, calibrating the 
coupling effects is of paramount importance if the potential usefulness of this data set is 
ever to be realized. Since no in situ calibration was ever done, calibration would 
involve deriving the correction coefficients from the data itself. Unfortunately no good 
method has been developed to do this kind of calibration, so continued research in this 
area is required. Additionally, since in situ calibration is often expensive and difficult, 
many modern DF systems would also benefit greatly from this kind of research. 
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